

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN IPD-DIS/12/7253 Notification Date 05/07/2012

IPD - ASD & IPAD Division Power Rectifiers in TO-220FPAB packages Additional Assembly and Test Location in China

Table 1.	Change	Implementation	Schedule
----------	--------	----------------	----------

Forecasted implementation date for change	30-Apr-2012
Forecasted availabillity date of samples for customer	30-Apr-2012
Forecasted date for STMicroelectronics change Qualification Plan results availability	30-Apr-2012
Estimated date of changed product first shipment	06-Aug-2012

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	Power Rectifiers in TO-220FPAB package	
Type of change	Assembly additional location	
Reason for change	to better meet the market demand	
Description of the change	Further to PCN APM-DIS/09/5170 announcing the qualification of an additional assembly and test location in China for selected Power Schottky Rectifiers, ST is announcing the extension of this additional assembly and test location to all its Power Rectifiers in TO-220FPAB.	
Product Line(s) and/or Part Number(s)	See attached	
Description of the Qualification Plan	See attached	
Change Product Identification	marking, plant code, internal codification, QA number	
Manufacturing Location(s)		

Table 3. List of Attachments

Customer Part numbers list	
Qualification Plan results	

Customer Acknowledgement of Receipt	PCN IPD-DIS/12/7253
Please sign and return to STMicroelectronics Sales Office	Notification Date 05/07/2012
Qualification Plan Denied	Name:
Qualification Plan Approved	Title:
	Company:
🗖 Change Denied	Date:
Change Approved	Signature:
Remark	

Name	Function	
Paris, Eric	Division Marketing Manager	
Duclos, Franck	Division Product Manager	
Cazaubon, Guy	Division Q.A. Manager	

DOCUMENT APPROVAL

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN IPD-DIS/12/7253

IPD - ASD & IPAD Division¹

Power Rectifiers in TO-220FPAB packages:

Additional Assembly and Test Location in China

TO-220FPAB

(1) IPD: Industrial, Power & Discretes - ASD: Application Specific Device - IPAD: Integrated Passive and Active Devices

WHY THIS CHANGE?

Further to PCN APM-DIS/09/5170 announcing the qualification of an additional assembly and test location in China for selected Power Schottky Rectifiers, ST is announcing the extension of **this additional assembly and test location** to **all its Power Rectifiers** in **TO-220FPAB**.

This manufacturing extension was decided to better meet the market demand with an expansion of **our manufacturing capacities** for all **Power Rectifiers** housed in **TO-220FPAB packages** (3 leads).

Multi-sourcing	Current	New
Assembly & test location	CHINA (ST plants)	CHINA (ST plants) CHINA (subcontractor)

The **product series** involved in this production extension are listed below.

Product sub-Family	TO-220FPAB series		
Power Schottky	STPSxxxCFP STPSxxHxxCFP STPSxxMxxCFP STPSxxMxxSFP STPSxxSMxxCFP STPSxxSMxxSFP STPSxxSMxxSFP STPSxxSxxCFP		
Ultrafast Rectifiers	STTHxxxCFP STTHxxxSFP STTHxxLCDxxCFP STTHxxLxxCFP STTHxxRxxCFP		

Specific devices not expressly listed in the above table are included in this change. Devices intended for the automotive market are exempt of this capacity extension.

WHAT IS THE CHANGE?

The additional assembly and test plant is located in **China**. The assembly **Bill Of Material** status is summarized in the table below.

	TO-220FPAB series		
Material	Current (ST China plants)	New (China Subcontractor)	
Lead Frame	Copper		
Die Attach	Soft solder		
Wire Bonding	Aluminum		
Moulding Compound	ECOPACK®2 grade ECOPACK®2 grade		
Lead Finish	Matte Sn		

There is no **impact** on the **electrical**, **thermal** and **dimensional** parameters, which results in **unchanged** current information published in the product datasheets. All verifications are included in the qualification program.

There is **no change** in the **packing mode** and in the standard **delivery quantities** either.

HOW AND WHEN?

Qualification and test results:

The **reliability test plan** supporting the qualification program for the implemented changes is **annexed** to the present document. The production ramp-up will be monitored with a **pre-launch control plan** implemented on selected parameters.

The reliability test report of the qualification program is annexed to the present document.

Sampling:

Samples of devices produced in the subcontractor plant will be available on request with approximate lead time of **30 days** depending on the die availability for each device.

Change implementation schedule:

The **production start** and **first shipments** will be implemented according to our work in progress and materials availability as indicated in the schedule below:

Salestypes	Production Start	1st Shipments
ALL	From week 18-2012	From week 31-2012

Absence of acknowledgement of this PCN within **30 days** of receipt will constitute acceptance of the change. After an acknowledgement, unless otherwise previously agreed to in writing for a specific process change requirement or for device specific requirements, absence of additional response within **90 days** of receipt of this PCN will constitute acceptance of the change. **Shipments** may in any case start earlier with the customer's written agreement.

Marking and Traceability:

Parts produced in China are differentiated by their **marking** as indicated below:

Assembly		Da	rking	
location	Diffusion plant code	Assy location code	Back end code	Date code
China (ST)	VU (France)	CHN	GK	y = 1 digit indicating the year ww = 2 digits indicating the week
China (subco)	VW (Singapore)		GE	number

Please note that the marking of the ECOPACK®2 devices includes the **letter** "**G**" printed to the right of the "e3" symbol of the IPC-JEDEC J-STD 609 standard.

Traceability for the implemented change is ensured by the **plant code**, by an **internal codification** and by the **Q.A. number**.

Annex: Reliability Report **12093QRP-Rev1** for qualification program

Reliability Report

Qualification of additional Assembly & Test site in China for Power Rectifiers in TO-220FPAB package

General Information

Product Description

Product Line

Product Group Product division Package Maturity level step formation Rectifiers (BU78) Power Schottky and Ultrafast rectifiers APM ASD & IPAD TO-220FPAB Qualified

Locations		
Wafer fab	ST Singapore ST Tours (France)	
Assembly plant	Subcontractor China	
Reliability Lab	ST Tours (France)	
Reliability assessment	PASS	

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
Rev.1	23-Apr-2012	10	Isabelle Ballon	J.P. Rebrasse	PCN IPD-DIS/12/7253

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPL	LICABLE AND REFERENCE DOCUMENTS	3
2	GLO	SSARY	3
3	RELI	ABILITY EVALUATION OVERVIEW	4
	3.1	OBJECTIVES	4
	3.2	CONCLUSION	4
4	DEVI	CE CHARACTERISTICS	5
	4.1	DEVICE DESCRIPTION	5
	4.2	CONSTRUCTION NOTE	5
5	TEST	S RESULTS SUMMARY	5
	5.1	Test vehicle	5
	5.2	TEST PLAN AND RESULTS SUMMARY	6
6	ANN	EXES	7
	6.1	PIN CONNECTION	7
	6.2	BONDING DIAGRAM	7
	6.3	PACKAGE OUTLINE/MECHANICAL DATA	8
	6.4	TESTS DESCRIPTION	9

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits
RER	1039009 / 0940005

2 GLOSSARY

SS	Sample Size
PC	Preconditioning
HTRB	High Temperature Reverse Bias
ТНВ	Temperature Humidity Bias
TC	Temperature Cycling
IOLT	Intermittent Operating Life Test
RSH	Resistance to solder Heat
SD	Solderability
	Screwing

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

3.1 Objectives

The objective of this report is to qualify additional assembly and test location in china for Power rectifiers housed in TO-220FPAB package.

The product series involved in this production extension and qualification are listed below.

Product sub-Family	TO-220FPAB series
Power Schottky	STPSxxxCFP STPSxxHxxCFP STPSxxLxxCFP STPSxxMxxCFP STPSxxMxxSFP STPSxxSMxxCFP STPSxxSMxxSFP STPSxxSMxxCFP
Ultrafast Rectifiers	STTHxxxCFP STTHxxxSFP STTHxxLCDxxCFP STTHxxLxxCFP STTHxxRxxCFP

Specific devices not expressly listed in the above table are included in this change.

In order to guarantee the product perimeter reliability, corner test vehicles in the table below have been carefully selected following AEC-Q101 recommendation on generic data.

Test vehicles	Description	Package	
Specific product	Power		
STPS20H100CFP	Schottky		
STTH16R04CFP	Turboswitch	TO-220FPAB	
STTH2002CFP	I litrafact bipolar		
STTH2003CFP	Ultraiast bipolar		

The reliability test methodology used follows the JESD47-F: « Stress Test Driven Qualification Methodology ». The following reliability tests ensuing are:

- TC, RSH and IOLT to ensure the mechanical robustness of the products.
- HTRB to evaluate the risk of contamination from the resin and the assembly process versus the die layout sensitivity.
- THB to check the robustness to corrosion and the good package hermeticity.
- Solderability to check the ability of the component to be successfully soldered to the next level assembly using tin lead eutectic solder

3.2 <u>Conclusion</u>

ST ensures that the product has successfully completed the reliability plan. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 <u>Device description</u>

Power rectifiers housed in TO-220FPAB (3 leads) package.

4.2 Construction note

	Power Rectifiers
Wafer/Die fab. information	
Wafer fab manufacturing location	ST Singapore – ST Tours (France)
Technology	Power Rectifiers
Die finishing back side	Ti-Ni-Au
Bond pad metallization layers	AI
Wafer Testing (EWS) information	
Electrical testing manufacturing location	ST Singapore – ST Tours (France)
Assembly information	
Assembly site	Subcontractor China
Package description	TO-220FPAB
Molding compound	ECOPACK®2 ("Halogen-free") molding compound
Frame material	Copper
Die attach process	Soft solder
Die attach material	Preform Pb/Sn/Ag
Wire bonding process	Ultra Sonic wire bonding
Wires bonding materials/diameters	Aluminum
Lead finishing process	Matte Tin (Sn)
Final testing information	
Testing location	Subcontractor China

5 TESTS RESULTS SUMMARY

5.1 <u>Test vehicle</u>

Lot #		Package	Product Line	Comments
L1	RER0940005L1		STTH2002CFP	Bipolar 200V
L2	RER0940005L2		STTH16R04CFP	Bipolar 400V
L3	RER0940005L3	TO-220FPAB	Specific product	Power Schottky 150V
L4	RER1039009L1		STTH2003CFP	Bipolar 300V
L5	RER1039009L2		STPS20H100CFP	Power Schottky 100V

Detailed results in below chapter will refer to P/N and Lot #

5.2 Test plan and results summary

Test		Std rof	Conditions	66	Stone	Failure/SS				
Test		5tu rei.	Conditions	33	Sieps	Lot 1	Lot 2	Lot 3	Lot 4	Lot 5
					168 H	0/77	0/77	0/77		
HTRB	Ν	JESD22A-108	$IJ = 150^{\circ}C, V = 0.8 VRRM$	231	500 H	0/77	0/77	0/77		
			0.0 11111		1000 H	0/77	0/77	0/77		
Screwing	Ν	ST 0019334	15 Kg cm	30	Electrical Measure after test	0/10	0/10	0/10		
RSH	N	JESD22B-106	260°C 10s ON 15s OFF	12	Electrical Measure after test			0/12		
тс	NI			75	100cy	0/25	0/25	0/25	0/77	0/77
	IN	JESD22A-104	-05 C/+150 C	75	500cy	0/25	0/25	0/25	0/77	0/77
IOLT	N	MIL-STD 750	IF for ATc=85℃	75	4286cy	0/24	0/25	0/25		0/75
		Method 1037		.0	8572cy	0/24	0/25	0/25		0/75
			Ta = 85°C, RH =		168 H	0/25	0/25	0/25		
THB	Ν	JESD22A-101		75	500 H	0/25	0/25	0/25		
			0070, Birto		1000 H	0/25	0/25	0/25		
SD	N	J-STD-002	245°C SnAgCu 220°C SnPb	40 40	Electrical Measure after test	0/20 0/20	0/20 0/20	0/15 0/15		

6 ANNEXES

6.1 <u>Pin connection</u>

6.2 Bonding diagram

Package	Bonding diagrams
TO-220FPAB	

Note : Generic scheme (die / wire bonding sizes and die design given as example)

6.3 Package outline/Mechanical data

TO-220FPAB

6.4 <u>Tests Description</u>

Test name	Description	Purpose
Die Oriented		
HTRB High Temperature Reverse Bias	The device is stressed in static configuration, trying to satisfy as much as possible the following conditions: low power dissipation; max. supply voltage compatible with diffusion process and internal circuitry limitations;	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices operating condition in an accelerated way. To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects.
Package Oriented		
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
IOLT	All test samples shall be subjected to the specified number of cycles. When stabilized after initial warm-up cycles, a cycle shall consist of an "on" period, when power is applied suddenly, not gradually, to the device for the time necessary to achieve a delta case temperature (delta is the high minus the low mounting surface temperatures) of +85°C (+60°C for thyristors) +15°C, -5°C, followed by an off period, when the power is suddenly removed, for cooling the case through a similar delta temperature. Auxiliary (forced) cooling is permitted during the off period only. Heat sinks are not intended to be used in this test, however, small heat sinks may be used when it is otherwise difficult to control case temperature of test samples, such as with small package types (e.g., TO39).	The purpose of this test is to determine compliance with the specified numbers of cycles for devices subjected to the specified conditions. It accelerates the stresses on all bonds and interfaces between the chip and mounting face of devices subjected to repeated turn on and off of equipment and is therefore most appropriate for case mount style (e.g., stud, flange, and disc) devices.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
RSH	The device is submitted to a dipping in a solder bath at 260°C with a dwell time of 10s. Only for through hole mounted devices.	This test is used to determine whether solid state devices can withstand the effects of the temperature to which they will be subjected during soldering of their leads. The heat is conducted through the leads into the device package from solder heat at the reverse side of the board. This procedure does not simulate wave soldering or reflow heat exposure on the same side of the board as the package body.

Test nameDescriptionPurposeSDThe device is aged in a wet and dry bath of solder. A preconditioning test is included in this test method, which degrades the termination finish to provide a guard band against marginal finish.To test whether the packaging materials and processes used during the manufacturing operations process produce a component that can be successfully soldered to the next level assembly using tin lead eutectic solder		-	-
SDThe device is aged in a wet and dry bath of solder. A preconditioning test is included in this test method, which degrades the termination finish to provide a guard band against marginal finish.To test whether the packaging materials and processes used during the manufacturing operations process produce a component that can be successfully soldered to the next level assembly using tin lead eutectic solder	Test name	Description	Purpose
	SD	The device is aged in a wet and dry bath of solder. A preconditioning test is included in this test method, which degrades the termination finish to provide a guard band against marginal finish.	To test whether the packaging materials and processes used during the manufacturing operations process produce a component that can be successfully soldered to the next level assembly using tin lead eutectic solder

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2012 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com